નીચેની સુરેખ સમીકરણ સંહતિ  $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$  ;$x-y+4 z=8$

  • [JEE MAIN 2021]
  • A

    $\alpha+\beta^{2}+\gamma^{3}=12$ નું સમાધાન કરતો ઉકેલ $(\alpha, \beta, \gamma)$ છે.

  • B

    અસંખ્ય ઉકેલો છે.

  • C

    એક પણ ઉકેલ નથી.

  • D

    અનન્ય ઉકેલ છે.

Similar Questions

જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ અને $\alpha \ne \frac{1}{2} $ તો . . .

$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $

સુરેખ સમીકરણ સંહિતા 

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

ને શુન્યેતર ઉકેલો હોય તો $\lambda$ ની બધી ભિન્ન કિમતોનો સરવાળો શોધો 

  • [JEE MAIN 2020]

$'a'$ ની  . . . .  કિમંત માટે સમીકરણો  $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$  ; $x + y + z = 0$ ને શૂન્યતર ઉકેલ મળે.

$\left| {\begin{array}{*{20}{c}}
  0&{x - y}&{x - z} \\ 
  {y - x}&0&{y - z} \\ 
  {z - x}&{z - y}&0 
\end{array}} \right|$ મેળવો.